Konsep Statistika Inferensial, Hipotesis dan Pengujian Hipotesis, Taraf Signifikansi

(1) * Sulia Fitriani Mail (Universitas Pembangunan Panca Budi, Indonesia)
(2) Nazwa Salsabila Br Manurung Mail (Universitas Pembangunan Panca Budi, Indonesia)
(3) Dian Sri Anggraini Mail (Universitas Pembangunan Panca Budi, Indonesia)
(4) Hadi Saputra Panggabean Mail (Universitas Pembangunan Panca Budi, Indonesia)
*corresponding author

Abstract


Inferential statistics enables drawing conclusions about a population from sample data. Hypothesis testing involves formulating a null hypothesis (H₀) and an alternative hypothesis (H₁). A p-value indicates the probability of obtaining results at least as extreme as those observed, assuming H₀ is true. If the p-value is less than the predetermined significance level (α), commonly set at 0.05, H₀ is rejected in favor of H₁, suggesting statistical significance. Tests can be one-tailed or two-tailed, depending on the research question's directionality. Type I errors (false positives) and Type II errors (false negatives) are risks in hypothesis testing. Controlling these errors involves careful selection of α and consideration of the test's power, which is the probability of correctly rejecting a false null hypothesis. In studies involving multiple comparisons, adjustments such as the Bonferroni correction and the Holm–Bonferroni method are employed to control the family-wise error rate, thereby reducing the likelihood of Type I errors across multiple tests. These techniques adjust the significance thresholds to maintain the overall error rate within acceptable bounds.


Keywords


Inferential Statistics, Hypothesis Testing, Null Hypothesis (H₀), Alternative Hypothesis (H₁), Significance Level (α), P-value, Type I Error, Type II Error, One-tailed Test, Two-tailed Test, Bonferroni Correction, Holm–Bonferroni Method, Statistical Power

   

DOI

https://doi.org/10.57235/aurelia.v4i2.6786
      

Article metrics

10.57235/aurelia.v4i2.6786 Abstract views : 6 | PDF views : 3

   

Cite

   

Full Text

Download

References


Annas, Suwardi. Makalah Mata Kuliah Statistika “Pengujian Hipotesis”.

Dahri, M. (2017). Jenis variabel dan skala pengukuran, perbedaan statistik deskriptif dan inferensial.

Ghozali, I. (2021). Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. Semarang: Badan Penerbit Universitas Diponegoro.

Harlyan, L. I. (2012). Uji Hipotesis. Statistik (MAM4137): University of Brawijaya.

Priyatno, D. (2020). Mandiri Belajar Analisis Statistik Data Penelitian dengan SPSS. Yogyakarta: Mediatera.

Sarwono, J. (2021). Statistik itu Mudah: Teori dan Aplikasi dengan SPSS. Yogyakarta: Andi. Sutopo, E. Y., & Slamet, A. (2017). Statistik Inferensial. Yogyakarta: Penerbit Andi.

Wardani, D. K. (2020). Pengujian Hipotesis (deskriptif, komparatif dan asosiatif). LPPM Universitas KH. A. Wahab Hasbullah.

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). “Moving to a World Beyond p < 0.05.” The American Statistician, 73(sup1), 1–19.

Yulianto, H. (2016). Statistik 1. Lembaga Ladang Kata.

Zaki, M., & Saiman, S. (2021). Kajian tentang Perumusan Hipotesis Statistik Dalam Pengujian Hipotesis Penelitian. JIIP – Jurnal Ilmiah Ilmu Pendidikan, 4(2), 115–118.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sulia Fitriani, Nazwa Salsabila Br Manurung, Dian Sri Anggraini, Hadi Saputra Panggabean

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.